petailed behavior is adjustable by choice of the

parameters. Now the distribution function of time to

failure, 2, is obtained from (2.50) ¢

P{2 > z} exp{- [f) h(x)dxi

e |
= exp %- / (e * B+ A)dx}

0
- [ A n(l + %)'+ % z2 + xz]}
A

= exp ‘l
pt o L Gl
. 5 2 (2.54)
where 5
= a
Fl(z) = ( a + z)
52(2) = exp (- g 22) (2.55)

53(2) e

All of the above are recognized as being the complements of
distribution functions. In effect, the distribution of 2

is that of the minimum of three independent random variables:

p{(z > z} = P{xl > z}-P{x2 > z}-P{x3 > g}, (2.56)
26
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X, having the distribution F, =1 - F, (i=1,2,3).

i i
This fact leads directly to an easy procedure for simulation
of 2 Dby simply obtaining the smallest from among the
realization of xl, xz, and x3. The advantage of the pre-
vious method, based on (2.6) for instance, is that only one
realization-~-that of an exponential in that specific example
-~leads to the realization of 2. This is not only computa-
tionally attractive, but seems to facilitate the application

of such Monte Carla variance reduction techniques as control

and antithetic variables, cf., Hnmmersiey and Handscomb (5].
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III. OBTAINING SPECIFIED HAZARD BEHAVIOR

BY SIMPLE SAMPLING

The development of the last section illustrates one
manner in which hazard behavior may be conveniently repre-
sented and siimulated. We now show how such behavior may
alternatively be obtained by simple simulation, i.e. from
one realization of a basic (possibly exponential) random
variable.

Refer to (2.5), in which

Z = G(X) (3.1)

and, if G(+) is monotonically increasing,

z(p) = G(x(p)) . i (3.2)

z(p) and x(p) being the p+1l00% percentiles of Z and X,
respectively. Then the counterpart to (2.23) that-results

from differentiation of (3.2) is the expression

1 1
hz(z(P)) = hx(x(P)) MEIR = hx(X(p)) 1=/ (3.3)

Consequently, if one specifies hz(z) as a suitable func-
tion of the "time" 2z, and specifies the distribution of
the stochastic variable X--and hence its hazard, hx--there

results a differential equation for z(x) = G(x):

dz
hz(z) = - hx(x) : (3.4)

integration then provides the desired transformation, G. 1In

other words, we seek 2z(x) satisfying
28
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z X
g h,(u)du = é h (v)av ,

which can sometimes be carried out in a useful closed form.

(3.5)

Example 3.1. Refer to the example of Section II, wherein

h is given by the expression (2.50) and we assume that X

is exponential, so hx is constant. Then in order to deter-

mine G(x) = z(x), solve the equation

. %
é [E‘%—E + Bu + A] du = [ dv
0
or

A Wn(l + %) + g 22 + A2 = X

Closed-form solution of this expression for 2z in terms of

X is of course impossible. One possible approach is purely

(3.6)

numerical: find an approximate solution, zo(x), e.g. the

appropriate solution of the quadratic

% zz + A2 = X

(3.7)

and then correct the result by a few Newton-Raphson itera-

tions. In other words, put

A+ sz + 2Bx

5 il i i =

now apply Newton to obtain an improved sclution

A Wn(l+ zl/a)

2y(x) = 2y - IVAFREIVED TAED

29
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which will be feasible if 0 < z,. The process can be
iterated (the numerator will change after the first iter-
ation). 1If one wishes to use this model it may actually be

desirable to start by solving

g 22 + (A + %)z -x=0 (3.10)

for zl, in which case the numerator will not be as shown in

(3.9); convergence may be more rapid.

Example 3.2. Change the hazard representation of the previous

example as follows: let

A

hz(u) = + Bu + A; (A, a, B, A > 0) (3.11)
(v + a)
then
" Az B _2
f hz(u)du = m + -2- 2 + Az (3.12)

0

Now it is necessary to solve

ETE—%EET e g £% & Aaowm x i (3.13)

i.e., the cubic

§z3+[a§-+xlzz+[§+ax-x1z-ax-o, (3.14)

which can be carried out, at least formally, in closed form.
Cace again an iterative solution that begins by dropping the
cubic term, solving the resulting quadratic for zl(x), and
then continuing along the Newton-Raphson road may be
successful. Further investigations of these ideas should

be conducted.
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IV. COMPUTER SIMULATION AND ESTIMATION PROCEDURE

A. SIMULATION AND NUMERICAL RESULTS

In previous chapters an analytical model was described
for the failure rate function; useful foémulas were also
derived from the model (2.39) and (2.40). Before the model
is used in realistic situations, it will be convenient to

build a computer simulation model for model validation.

1. Algorithm

First a very basic simulation model was built for
determining the general shape of the failure rate function
associated with parameters o, 8 and A. In the simulation
model, « was selected to be 1.0 and 2.0, B was selected to
be 0.05, 0.01, 0.005, 0.001 and ) was selected to be 0.1.
These values were picked arbitrarily, it is only stipulated
that o is always greater than 8. The general algorithm
of the simulation model is shown in Fig. 2.

The hazard function is calculated according to the
model (2.37) and the system logic function (2.40). The

results were shown in Fig. 3 and Fig. 4.

2. Some Comments

These simulation results show that:
a. Parameter a is effective when 2z values relatively
have small values. That is, it influences the early

failure period.

31
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START

INITIAL VALUES OF
PARAMETERS

GENERATING RANDOM NUM.
FROM EXPONENTIAL
DISTRIBUTION

GETTING Z VALUES
Z2=G(X)

GETTING FAILURE RATE
FUNCTION

PLOTTING Z vs FAILURE
RATE FUNCTION

Fig. 2. Basic Algorithm.
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b. Parameter B8 is effective on the relatively bigger =z

values. That is, it describes wearout failures.

c. Parameter )\ has little effect on the shape of the
curve; it is a scale factor.

d. The last important observation is that the 2z values

are limited by the parameter 8 such that:
z £ %
When 2z equals 1/8, hz(z) goes to infinity.
B. EMPIRICAL DENSITY FUNCTION AND ESTIMATION PROCEDURE
In this section, an estimation procedure for parameters

a, B, )\ is defined and the procedure of finding the

empirical density function is described.

1. Empirical Density Function

Suppose that Ni' N, & and NO are defined as

follows:

Ni = the frequency of data points for each time interval
between a; and bi for i equals 1,2,3,...,k.

N = the total number of failures where,

k
N = N,
121 .

A = the length of each interval

A = bi - ai




C. TEST PROCEDURE FOR PARAMETERS

In order to determine whether the model reasonably fits
the data a simple test procedure is applied. It is to
exhibit the simple comparison of the actual points 2z (P)

and the estimated values E(Pi, using the estimated

parameters.
Basically z(P) can be obtained as follows:
A 1
x(p) = - = ¢n(l-p) (4.15)
A

Then if it is substituted in expression (2.37), z(P) will

be

ax? (p)

zZ(P) = — g
(1L + ax(P)) (1 + gx(P))

(4.16)

In equation (4.16), all variables are known so estimated
quantiles can be easily obtained.

In Fig. 9 actual values and estimated values are plotted.
Also Fig. 10 displays residuals, which are the difference

between actual and estimated values.
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V. NUMERICAL APPLICATIONS TO TWO SETS

OF REAL DATA

In this section the two failure data sets studied come
from these sources: Oral irrigator [7] and human life [8].
They are used for numerical examples in that these data are

fitted using the model (2.6).

A. ORAL IRRIGATOR

The data used was obtained from the Commun. Statist.-
Theor. meth., Colvert and Bordman [7]. The data was col-
lected such that 100 oral irrigators were placed on the test
was terminated at 700 time units. During the life test, 98
oral irrigators failed; another 2 oral irrigators survived.
The ordered observed times to failure of the oral irrigators
is tabulated in Table V.

Using the data of Table V, the parameters a, 8, and )\
are estimated by means of the 3-percentile approach. To
demonstrate the differences between estimated values,
various different combinations of p values ware used. The
results are shown in Table VI.

Examination of Table VI indicates that the 3-percentile
approach may produce estimates having great differences for
different percentile values, except here in the case of the
first two combinations. Also the first two estimations seem
to have accepatable limiting age. Moreoever, the last two

combinations do not fit well, as judged from the residuals.
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TABLE V

TIME TO FAILURE OF ORAL IRRIGATORS

1.75 7.02 7.58 9.76 15.02 15.57
17.39 19.55 22.47 23.24 23.96 25.05
32.44 36.87 42.76 43.14 46.95 56.33
58.99 59.08 60.37 61.01 77.86 86.45
88.50 103.06 104.34 105. 85 117.46 | 120.11

122.28 122.61 129.31 130.42 137.57 | 142.27

142.98 148.29 150.79 151.21 155.62 | 157.93

160.72 169.79 186.26 197.60 224.83 | 233.64

242.07 256.86 260.77 261.68 277.99 | 283.95

288.94 295.48 314.76 316.06 332.07 | 339.46

362.61 369.47 370.74 491.06 403.39 | 414.78

426.71 459.62 455.84 457.94 466.61 | 468.64

469.09 476. 42 481.41 481.82 488.15 | 490.06

493.67 494.38 503. 72 508.93 509.01 | 418.32

532.29 534.62 545.23 547.41 558.41 | 571.10

585.52 589.11 592.93 607.15 623.15 | 647.91

TABLE VI
ESTIMATED VALUES OF a, 8, A BY USING 3-PERCENTILE

P, | Py | Py X a 8 1/8

d F 8] 0.00153 | 0.00634 | 0.001028 972.76

25 | .5 | .9 0.00158 | 0.00710 | 0.001018 982.31

.1 | .5 | .75 | 0.00239 | 0.01835 | 0.000228 | 4385.96

.25 | .5 | .75 | 0.00273 | 0.04514 | 0.000077 | 12987.01




Next the nonlinear optimization approach was applied to

estimate parameters a, B and A associated with Pyr Py
and Py both using the derivative and without derivative by
taking into account 98 ordered values. The results are

tabulated in Tables VII and VIII for Pye Py and A

3
a, B respectively. Some initial points in Table II are
used. Table VII indicates that the estimates obtained from
the nonlinear estimation method are more consistent than
those from the 3-percentile approach. Also, the boundary
points, 1/8, seem reasonable. Finally, comparison of the
actual values of z(p) and estimated values of zZ(p) indi-
cate that the fitting is reasonable. The residuals of

fitted model and the comparison of the actual and estimated

values are plotted in Fig. 1l and Fig. 12.

B. HUMAN LIFE (MORTALITY) DATA

The data used in this example was obtained from the
1969-71 life table [8] for white females in the United States.
The table has been prepared from a history of 100,000 persons:
the number of surviving, and the number dying has been given

for each age interval. Look at Table IX.

1. Estimation by Using 3-Percentile Approach

The life data is first fitted to the model (2.37)
'by using the 3~-percentile approach. Certain pth percentile
values are selected and used in the estimation process.
These results are tabulated in Table X. Investigation of

the last eight combinations of percentiles in these tables
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indicates that the limiting age, 1/8, is approximately 110,
which is reasonable. However, the first combination of
percentiles gives a good fit in terms of the sum of the
squared errors. But for these limiting age is reduced to
about 95 years. This apparently means that the fit of the
model does not represent the age above 95. Thus it can

be said that there is a trade-off between 1/8 and the sum
of squared errors. The present model simply does not seem

to fit the mortality data very well.

2. Estimation By Using Nonlinear Least Squares, and

Application of a Nonlinear Programming Algorithm

In the previous section we discussed the fact that
one of the problems encountered in the 3-percentile estima-
tion procedure was the high uncertainty of fitting, as
measure by the sum of squared errors. In order to reduce
this variability, a nonlinear estimation process is applied.
Previously it was noted that the GRG package can be used
with analytically computed derivatives and without
derivatives. If it is used with analytically computed
derivatives, it is necessary to provide another subprogram
by the user. Otherwise the GRG package will provide the
derivative, computed numerically and automatically.

The derivative of the objective function (4.13) is

the normal equations such that

70
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TABLE IX
MORTALITY DATA FOR WHITE FEMALES, 1969-71
Time # of # of Time # of # of
Interval Survivors Dying Interval Survivors Dying
0- 1 100,000 1532 27-28 97,165 70
1- 2 99,468 100 28-29 97,095 73
2- 3 98,368 65 29-30 97,022 77
3- 4 98,303 54 30-31 96,945 8l
4- 5 98,249 46 31-32 96,864 87
5- 6 98,203 39 32-33 96,777 93
6- 7 98,164 35 33-34 96,684 101
7- 8 98,129 32 34-35 96,583 109
8- 9 98,097 29 35-36 96,474 118
9-10 98,068 26 36-37 96,356 128
10-11 98,042 24 37-38 96,228 141
11-12 98,018 24 38-39 96,087 153
12-13 97,994 25 39-40 95,932 170
13-14 97,969 30 40-41 95,762 185
14-15 97,939 37 41-42 95,577 201
15-16 97,902 45 42-43 95,376 220
16-17 97,857 54 43-44 95,156 242
17-18 97,803 60 44-45 94,914 263
18-19 97,743 62 45-46 94,649 291
19-20 97,681 63 46-47 94,358 al?
20-21 97,618 63 47-48 94,041 344
21-22 97,555 63 48-49 93,697 372
22-23 97,492 63 49-50 93,325 401
23-24 97,429 64 50-51 92,924 433
24-25 97,365 66 51-52 92,491 469
25-26 97,299 66 52-53 92,022 506
26-27 97,233 68 53-54 91,516 546
71
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TABLE IX Cont.

Time # of # of Time # of # of
Interval | Survivors Dying Interval | Survivors Dying
54-55 90,970 587 82- 83 41,215 3,586
55-56 ‘90,383 632 83- 84 32,629 3,589
56-57 89,751 680 84- 85 34,040 3,550
57-58 89,071 730 85~ 86 30,490 3,495
58-59 88,341 781 | 86~ 87 26,995 3,425
59-60 87,560 834 87- 88 23,570 3,286
60-61 86,726 911 88- 89 20,284 3,072
61-62 85,835 953 89- 90 17,212 2,806
62-63 84,882 1,022 | 90- 91 14,406 2,531
63-64 83,860 1,098 91- 92 11,875 2,262
64-65 82,762 1,183 92- 93 9,613 1,982
65-66 81,579 1,275 93- 94 7,631 1,694
66-67 80,304 1,375 94~ 95 5,937 1,411
67-68 78,929 1,486 95- 96 4,526 1,145
68-69 77,443 1,607 96- 97 3,381 905
69-70 75,836 1,735 97- 98 2,476 696
70-71 74,101 1,862 98-~ 99 1,780 524
71-72 72,239 1,993 99-100 1,256 384
72-73 70,246 2,141 |100-101 872 277
73-74 68,105 2,312 |101-102 595 195
74-75 65,793 2,503 |102-103 400 135
75=76 63,290 2,693 |103-104 265 92
76-77 60,597 2,872 |104-105 173 61
77-78 57,725 3,039 |105-106 112 41
78-79 54,686 3,187 [106-107 71 26
79-80 51,499 3,317 |107-108 45 17
80-81 48,182 3,434 (108-~109 28 11
81-82 44,748 3,533 {109-110 17 6
72




ESTIMATED VALUES OF «a,

3-PERCENTILE APPROACH

TABLE X

8, A FOR MORTALITY DATA USING

Percentile A o g n
Values A o B 1/8
22 56 92 0.000674 0.1190 0.010550 94.7
20 56 92 0.000550 0.0404 0.010520 95.0
17 56 932 0.000508 0.0302 0.010550 94.7
16 56 92 0.000440 0.0199 0.010550 94.7
17 56 109 0.000862 0.1676 0.009069 110.2
18 56 109 0.000886 0.2389 0.009068 110.2
19 56 109 0.000908 0.3708 0.009067 110.2
17 56 110 0.000876 0.1805 0.008991 111.2
18 56 110 0.000899 9.2613 0.008989 111.2
19 56 110 0.000920 0.4188 0.008988 111.2
20 56 110 0.000941 0.9070 0.008988 111.2
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N is 110 in the case of human mortality data.

The results of estimation were shown in Tables XI
and XII for Py and a, B, A respectively. Also Fig. 13
and Fig. 14 demonstrate the actual and estimated values and
residuals of fitting.

Examination of Table XI and Table XII indicates
that the objective function values (the sum of the squared
errors) of the fitting are smaller than the objection func-

tion values of 3-percentile approach. Also the estimated
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parameter values B and A associated with Py and P3

are very close to each other. But estimated values of a
show considerable difference for the various initial values.
However, there are two important facts to notice. First,
when a increases significantly, the objective function
values remain almost constant. That is, it is not effected
significantly on the objective function values in this case.
Second, this analytical model (2.6) does not represent
deaths beyond the age 95. However, modifications can be
made in the model (2.6) for this kind of difficulty. Some

ideas will be discussed in a later section.

3. Model Modifications

In the previous section it was noted that the model
(2.6) has relatively great errors and does not accurately
describe probability of death at age greater than 95 in the
human life example. This means that the hazard function
hz(z) increases too rapidly in the wearout period. If it
is possible to slow the rate of increase of hazard perhaps a
better result can be obtained.

In Section II, it was stated that the function

R(x) describes the wearout period in bath tub type curves:
1
MmarE o

If a new parameter, Yy, is defined which is between
0 and 1 and R'(x) is now defined to be the yth power of

R(x):




1

R'(x) = ’
(L +8x)"

B>0, 0<yY<1 (4.20)

then R'(x) will provide for a slowly increasing, rather
than rapidly'increasing, in wearout period. With this

revision the model (2.6) now becomes

2 = G(x) = xL(x)°*R'(x) (4.21)

or 5
z = % (4.22)
(L + ax) (1 + 8x)Y

where a >0, 8 >0 and 0 < y < 1.

However, after we put another variable in the model,
it will be too difficult to handle in the previous estimation
technique for obtaining values of the parameters a, B8, A
and Yy because of nonlinearity and indefiniteness of the
expression (4.22).

For this reason, Yy will be assumed constant in the
previous estimation procedure. Then it will be computa-
tionally convenient. Actually, the estimation procedure
does not require any change. The nonlinear least square
estimation approach will simply be used for different values
of y. Table XIII and Fig. 15 demonstrate the parameters
estimated and the resulting objective function values. From
Table XIII, it can be easily seen that the new result has a
smaller sum of squared errors. The best value of Y seems

to be near 0.95.
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] TABLE XIII
ESTIMATION VALUES OF a, 8, A
USING CONSTANT vy

|1

i r of Objective

; un LY A o 8 Value
1 1.000 0.000834 0.42950 0.01029 4,335.89
2 0.97 0.000512 0.04051 0.01182 3,119.85
3 0.95 0.000363 0.01928 0.01314 2,494.10
4 0.93 0.000740 1.06371 0.01352 2,999.11
5 0.90 0.000685 1.81283 0.01554 3,267.47
6 0.85 0.000592 5.74169 0.02031 5,099.37
7 0.7 0.000319 3.17467 0.04580 15,310.06
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C. CONCLUSIONS

Simple analytical hazard models have been developed
and fitted to situations (data) that exhibit bath tub
shaped hazard functions. That is, failure rates may be
high at early ages (“infant mortality"), constant at
intermediate ages, and high again for later ages ("wearout").
The procedure emphasizes representations of the inverse
distribution function; simulation is thus facilitated.

The failure time distributions so derived should be
useful in analyzing maintenance and replacement policies.

A least squares technique for fitting the hazard models

to data are suggested and applied.
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